| 9 | Suppose m is a positive integer and $p_0, p_1, \dots, p_m \in \mathcal{P}(\mathbf{F})$ are such that each p_k has degree k . Prove that p_0, p_1, \dots, p_m is a basis of $\mathcal{P}_m(\mathbf{F})$. | |---|--| | 0 | Suppose that $P_0, -1, P_m \in P(IF)$ are such that P_K has degree K Since P_0 is a constant and $P_0 \neq 0$. Then, $I = P_0/P_0$ | | | We can Write $P_1 = a \times b$ for some $x = (P_1 - b)$ We can write $P_2 = a \times b \times b$ $x = (P_1 - b)$ | | | |